International Journal Of World Academic
www.optimaleduresources.com Research, Volume 4, Issue 4, November 2023 www.worldresearchacademy.com

Modelling performance of the Classical Weibull, Classical
Exponential and Some Generalized Weibull and Exponential
Distributions based on failure data sets.

Realman Evans Obele'
&

Barinaadaa John Nwikpe’
Department of Mathematics/Statistics'’,
Ignatius Ajuru University of Education,

Port Harcourt, Nigeria.

Abstract

This study was carried out to determine the performance of the classical Weibull and exponential
distributions compared with the performance of some compound distributions, such as the Generalized
Weibull, Three-Parameter Weibull, Weibull inverse Exponential distribution, Exponential Generalized
and Inverse Exponential distribution using fourfailure data sets. R programming codes were developed
for the maximum likelihood estimate of the parameters of the models. The goodness of fit tests is used to
compare fitted model and determine how well the distributions fit a given data set. To achieve this, the
following goodness of fit criteria were considered; -2 Likelihood, Akaike Information Criterion (AIC),
Akaike Information Criterion Corrected (AICC) and Bayesian Information Criterion (BIC). The
findings of the study revealed that the generalized Weibull distribution performed better than the
classical Weibull and Classical exponential distribution.
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Goodness of fit.
Introduction and replacement decision; regretfully, this
Efficient maintenance practices are strategic for problem is often not solved efficiently. This
businesses whose success is reliant on high- growing desire for efficiency has necessitated the

performance equipment. Asset-intensive sectors employment of Mathematical models,
confront difficulties in appropriate prediction of  particularly for large scale equipment and
the active life circle of its equipment. One aspect components to prevent long-term shutdowns of
of maintenance and replacement management is critical equipment such as haul truck engines, mill
interpreting data for the purpose of managing the liners, and shovel swing transmissions.

equipment as effectively as possible. To achieve In the past, cost Optimization was
this, the gathering of a large amount of data is a popular principle for planning
always needed for the purpose of analysis; useful replacements or maintenance of
data comes from a variety of sources, including equipment component.
customers, maintenance and operating personnel. Conversely, this technique did not
All of these data is processed in a systematic way take into account factors such as
with the purpose of making sound decisions the reliability of the system and the
(Levitin, 2000, Tsai et al., 2001). A manufacturer's probability of a sudden
maintenance costs account for approximately breakdown, which could have a
15% to 40% of the cost of the product significant impact on preventive
manufactured, however one out of three of all maintenance decisions (Wang
maintenance costs are attributed to unnecessary &Coit, 2005). The concept of
or wrong maintenance procedures (Murthy et reliability and likelihood suggest
al.,2004). Experts in all businesses are confronted that modelling of replacement and

with this challenge of making proper maintenance
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maintenance could be enhanced
by introducing the notion of
probability. Adopting probability
models for maintenance is one of
the answers to these problems
since equipment maintenance has
become more important in order
to assure availability, functional
performance, and reliability of
equipment.

There exist a lot of literature on system and
component maintenance, replacement models as
well as the statistical reliability models all geared
towards improving system or component
performance (Yadav et al., 2003); (Rosss, 1980);
(Bilinton, et al., 2000); (Connor, 1991); (Jarrdine,
2003). The majority of maintenance and renewal
decisions, on the other hand, are based on past
experience and expert estimates. As earlier
mentioned, expert judgment-based evaluation
approaches have been used in the past, the
technique is based on the experts' experience with
system/component failure patterns.

To achieve a balance of operational and
economical goals, decision-making models for
dealing with important replacement problems
should incorporate reliability methodology, and
different probabilistic or mathematical models.
On the other hand, quantitative assessment can be
utilized for two primary reasons: past
performance evaluation and future performance
prediction. Historical evaluation, also known as
past performance assessment, examines the
system's actual performance over a specific time
period using suitable sets of reliability
parameters, the system's failure history is also
examined (Alaswad, 2012; Anders et al., 2001;
Cho &Parlar, 1991).

To be able to appraise the previous performance
of the system, historic evaluation necessitates the
gathering and analysis of historical relevant data
such as, failure incidences, durations of
breakdowns and reasons for breakdowns. In
quantitative terms, the reliability model
parameters is being evaluated and quantified
numerically using some mathematical models.

Apredictive assessment, on the other hand, can be
used to analyze the system's future performance.

After gathering the necessary lifetime data to be
used for the study, it becomes pertinent to select
an appropriate mathematical model for estimation
and analysis to be reasonable. Consequently, a
variety of mathematical and statistical models
have been developed, including the widely used
Weibull distribution, Exponential distribution,
Gaussian distribution, Gamma distribution,
Lognormal distribution, and cost optimization
models amongst others. The modification of some
standard models have also been done by some
researchers.

The classical Weibull and exponential
distributions are among the mathematical models
popularly used for modelling failure data.
According to Tang (2004) the failure time of most
systems were believed to follow an exponential
distribution before the 1980s since it has less
complex mathematical form with tractable
statistical characteristics. Yong (2004) discovered
that major short fall of the Weibull probabilistic
models is that the failure rate of a system after
multiple repair does not follow the Weibull
model. Thus, an optimal replacement policy
might not be obtained if the Weibull classical
distribution is used to model such system. Nwikpe
and Didi (2021) also noted that the constant
failure rate of the exponential distribution makes
it inappropriate for modelling most system, since
the failure rate might be a function of time. One of
its important properties is the so-called no-
memory property which applies to products with
an exponential lifetime distribution; the history of
the past behaviour of the system is
inconsequential. The second feature of the
exponential distribution is that its failure rate is
constant, which is one its shortfalls.

To model such failure time data, the Weibull
distribution is often employed. In the last few
years, various studies have been carried out on the
generalization/modification of the classical
Weibull distribution. The Weibull distribution has
also been studied extensively and applied in a
variety of fields. Nevertheless, the assertion of a
monotonic rate of failure may not always be
realistic real-life setting. The present study is
carried outto assess the performance of some
modified Weibull an exponential distribution for
failure data sets.
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Methodology

Failure Density

The failure density or in amore broad perspective
the probability density function (pdf) of a failure
data is described mathematically as;

(1)

In equation (1) the function f(x) approximates
the probability of failure in the time frame

) d
ti——, L.t

2 2
The probability of reaching an
age between t,and t t,< t,is

Pr(t, <T <t;)

- f 'Fo)dt @

The Lifetime Distribution Function

Another model which might be utilized in the
description of the failure of a system is the
cumulative lifetime distribution also called the
failure function or lifetime function defined as

F(t) =P(T<t)(3)

Precisely for a totally new system or just
produced unit for example, given that the unit is
beginning at age t > 0 is given by

Pr(T <¢t,) = J'rf (x)dx (4)

The lifetime distribution function is given by
equation (4), which gives the probability of
having a life span of at most length t.

Any function F(T) may be a cumulative
distribution function of a lifetime variable if
it satisfies the following properties:

lim e=o F() =0
lim,, F(t) =1

L=

F(t) 2 F(t). Vst 2t )

0<F(t) £1.

Some Selected Probability Models and their
Reliability Function

In this study, we examined the performance of
some generalized Weibull and exponential and
the TPAN distribution for some selected failure
data sets.

The Weibull Distribution

The following is the probability density function
of the classical two parameter Weibull
distribution:

)= (5) ) e~}
x.20,6>0,8>0 (6)

With cumulative distribution function

F(x.) =1—exp {— (%).G]
x.20,6>0,8>0 (7)

Where x is the random variable representing the
failure times or duration of failure of an
equipment

8 and g are the model parameters

7 = shape parameter

8 = scale parameter

This distribution, introduced by Weibull (1957) in
Pedro et al., (2018), has useful mathematical
qualities, and its failure occurs in a variety of
settings (Manton &Yashin, 2006). McCool
(2012) went into great detail about its application
inreliability.

The Exponential Distribution
The exponential distribution's distribution
function is given by

F(x)=1- e~ %%(8)
With probability density function

f(x) =6e™ (%)

The Three- Parameter Weibull Distribution
Mathematically the density function of the three
Weibull Distribution is defined as:

*



International Journal Of World Academic

www.optimaleduresources.com

Research, Volume 4, Issue 4, November 2023

www.worldresearchacademy.com

t-8,

Fe.) = Ba? (<= 6')3—1 el 1),

a>0,>0, 6 >0 ( 10)

Where @ is the location parameter?

a>0,f>0,and 6 >0

are the parameters of the distribution.

With corresponding Cumulative Distribution
Function (CDF)

F(t)=1—exp\* '

( vr—9.15‘
) (11)

The Weibull Inverse Exponential Distribution
A random variable t is said to follow the

Weibull Inverse Exponential Distribution if its
probability density function is given as;

o (=)

f(x) =afbx? e
(D)

>0,0>0>0
With cumulative distribution function given as;
B

{ &
F(y;8,9,a) = l—expl—a(&‘jg— ) (13)

1—exp|l_—;‘|

Exponentiated Generalized Inverse
Exponential Distribution (EGIED)

The failure density function of the exponentiated
inverse exponential distribution is given by:

f(t) =%?~exp( 9’) xp(——g. )

t. t

g \1%1 g ay F-1
[1—6‘1‘}9(—;.)] (1— [I-E’.\'p(-;.)] ) (3.45)
t>0>060>0
With CDF as:
. B-1

ro=(1f-en(-2)])

The reliability function is obtained as follows:

el

R(t)=1-
1—exp —?)

1-exp(-p (15)

The hazard rate function of (14) is given as follows:
J i 5 ey . anayB-1
H(e) = B%QYP(_%}W["%-;‘[1_9‘?(“%-,}]“ 1|.1-[1-m'.‘-%}]m}
- f { trp‘-!:“tl
tl—e“p —ﬁl ] )]

\ - f
\1-exp( -

Method of Parameter Estimation

In order to obtain the unknown failure parameter

parameters resulting from the failure density

function, the Maximum-Likelihood Estimation

(MLE) method will be adopted. Although, other

approaches for example, Method of Moments

(MOM), Least Squares Estimation and Bayesian

Estimation also exist for parameter estimation.

The choice of the MLE method amongst other

methods is based on the following reasons:

1). It has been proven mathematically that the
method of MLE has lower variance than
the other methods in the class of unbiased
estimators.

i) As sample gets larger, maximum
likelihood estimates are often minimum
variance estimator unbiased.

ii1) It offers a consistent solution to parameter
difficulties. And it is, it can be designed to
solve a wide range of estimation
problems.

v) The algorithms for calculating the
maximum likelihood estimates for the
vastmajority of widely known
distributions are easily accessible and
installed in a variety of major
Mathematical software.

As a result, the work is simplified and the
computational complexity associated with the
MLE is reduced.

The MLE is used to calculate the joint failure
density of a component. If f{);6) is a failure
density function, where y represents the failure
time of a component, then the likelihood
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function is L(y1, y2, y3,..yn;0) as a function of 6
is given by (Hoel, 1954) in Palelum (2007) as;
L(¥3, ¥2: Y3+ Y3 6)

= f(:0) X f(y0) X ...... X f(y,;8) (16)

Equation (3.14) can also be written as:
Lo y2ys 30 = | [(F0u®)  an)
i=1

Parameter Estimation
Maximum Likelihood Estimate of the
Parameters of the Weibull Distribution

L6 = [ |(rexs0))
i=1

n

1380 =[ [ §) G- ()}

=1

logL(x.; $,6) = nlogP — nlogh + Z{_ (ta)g] =0 (18)
=1

The solution of equation (11) gives the estimates
of the model parameters. However, the equation
cannot be solved analytically thus, was solved
numerically using R programming with some
data set.

Maximum Likelihood Estimate of the
Weibull Inverse Exponential Distribution

n

L(x;6) = l—[(_f(_v;;&)_) i=123,..,n
i=1
' B
ST G
= afdx,”* : %)
=R 1— [exp(—%)]
exp(—%) H
exp|—a .
‘1 = exp(—%)

exp(—%)

exp|—a| ——————— (19)
\ (‘1 = exp(—%) , :

Taking the log of the both sides we get

n

log L(x;;6) = nloga + nlod + nlogf — ZZ log(xi;jjj;)

1=1

Tﬁi(:—ﬁ)- B+ l)i Iog(l-—exp(.-%))

/ 8
[ a(-2)

X;

d(log L(I:;lﬂ)) n il I‘ exp(-%) 8 .
: . 0g _x N 2
da i=1 \1—exp(—%) '

Equating (13)to zero we get

. { an(-D)

n Z ] X; ;
a °g RN

B

n | en(-3)
= 1—exp(——)
(-5
log ad = (3.37)
11— exp(——
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Equating (3.37) to zero we get

The Maximum Likelihood Estimate of the
Exponentiated Generalized Inverse

n o /=9 . ) Exponential Distribution (EGIED)
-3()- 3, of1-ew(-2 >
L@:0) = | [(Fe:0)
T § 19 g 1=
() 1

ad

o(-5)exe(~7)
(2 -2 )
- (0ap ] | ovo(-E) exw(-2.)
[1-enn(-2)] T2

a, B-1

e (-2))

L(t;0) = nloga + nlogP + nlogf — 2logt,

3 @)+ vl -en(-2)]

i=1 ,

®- 1)2 tog - [-exp (-7 )]) (24)

Criteria for Selecting the Best Fitting Models
Amongst the Competing models

The goodness of fit tests is used to compare fitted
model and determine how well the distributions
fit a given data set. To achieve this, the following
goodness of fit criteria were considered; -2
Likelihood, Akaike Information Criterion (AIC),
Akaike Information Criterion Corrected (AICC)
and Bayesian Information Criterion (BIC).
According to Palelum (2007) these criteria are
computed as follows:

AIC = —2log L + 2k (25)

Where logL is the maximum value of the log-
likelihood function under the considered
distribution, and k is the number of parameters.
Akaike Information Criterion Corrected (AICC)
is computed as follows:

*



International Journal Of World Academic

www.optimaleduresources.com

Research, Volume 4, Issue 4, November 2023

www.worldresearchacademy.com

2k(K + 1)
AlCC = AIC+ ——= (26)
(n. —k.—1)
The Bayesian Information Criterion (BIC) is
computed as:

BIC = —-2log L + klogn (27)

Data Sets Used for the Study

The efficiency of maintenance or replacement
model is examined systematically based on data
obtained for performance and technical condition
in relation to facilities or parts of facilities. The
proposed approach for achieving maximum
likelihood estimates of failure parameters would
be demonstrated using some failure data.

The data sets used in this study were obtained as a
secondary data; they were used to fit into the
distributions. Some of the data sets were extracted
from journals. All the data sets used are failure
data from Engineering. The data sets are given
below.

Data Setl: The Time to Failure of S00mw
Power Generating Set

The first two failure data set used in this study was
given by Xu (2019). The first is the failure time data
sets of 500mw power generating set, and the second
is the failure data set of a load-haul-dump (LHD)
machine. The data are given below.

0.058 0.070 0.090 0.105 0.113 0.121 0.153 0.159
0.224 0.421 0.570 0.596 0.618 0.834 1.019 1.104
1.497 2.027 2.234 2.372 2.433 2.505 2.690 2.877
2.879 3.166 3.455 3.551 4.378 4.872 5.085 5.272
5.341 8.952 9.188 11.399

Data Set 2:The Life-Time of 30 Light Bulbs
Rounded to the Nearest Hour.

1122,922,1146,1120,1079,905,1095,977,1138,
1150,977,1137,1088,1139,1055,1082,1053,
1048,1088,996,1102,1028,1130,1002,990,1052,
1116,966,1132,1135.

Data set 3 was given by Looney et al. (2011)

Data Set 3 : The Strength Data of Glass of
the Aircraft Window

The fourth data set is the strength data of glass
of the aircraft window given by Fuller et al
(1994), studied by Shanker (2015). The data set
is given below

18.83,20.80, 21.657, 23.03, 23.23, 24.05,
24.321, 25.50, 25.52, 25.80, 26.69, 26.77,
26.78,27.05,27.67,29.90, 31.11, 33.20, 33.73,
33.76, 33.89, 34.76, 35.75, 35.91, 36.98,37.08,
37.09, 39.58, 44.045,45.29,45.381.

Data Set 4: The Number in Million of
Revolutions before the Failure of each 23
Deep Groove Ball Bearings in the Life Tests.
The fifth data set is the number in million of
revolutions before the failure of each 23 deep
groove ball bearings in the life tests. The data set
was first studied by Lawlesss (1982), it has also
been used by Shanker et al. (2015). The
observations are as follows:

2.75,0.13,1.47,0.23,1.81,0.30,0.65,0.10,3.00,1.7
3,1.06,3.00,3.00,2.12,3.00,3.00,3.00,0.02,2.61,2
.93, 0.88,2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80,
2.45,2.66

Results

To establish the performance of the selected
probability models for the failure time data used
in this study, the distributions were fitted to the
data sets. The results for the goodness of fit test
are shown in the Tables below. The distribution
with the smallest AIC, BIC and -2InL is regarded
the most flexible and superior distribution for the
data sets.
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Table 1: Fitted Probability Models of Failure
Times for Data Set 1

Fitted Parameter -2inLL AIC BIC AICC

Model for Estimate

Failure

Time

Weibull 0.816(shape) 137.300 141.381 144.548 141.740
2.312(Scale)

Exponential  0.390(rate) 139.890 141.890 143.473

Three-

Parameter

) 0.049(shape)

Weibull 0.113(Scale)

Model ’ 131.292 136.292 139.400 133.040
0.155(Location)

Generalized 116.500

WEIBULL 0.065(shape) 122.509 127.178 123.250

Distribution  0.002(scale)
0.001(location)

Weibull 0.100 (shape)

1

IVEISE 0,260 (scale) 161201 167201  169.200

Exponential
0.003(location)
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Table 2: Fitted Probability Distributions for Failure Times Data 2

Fitted Parameter -2inL AIC BIC AICC
Model for Estimate
Failure
Time
Weibull 1.048 (shape) 334.520 338.521 341.323 337.965
9.560 (Scale)
Exponential ~ rate 0.168 335.260 339.259 348.660
Three-
Parameter
. 0.004( shape)
Weibull 0.265(Scale)
Model ’ 333.974 337.975 340.527 848.344
0.098 (Location)
Generalized 159.317
WEIBULL 0.004 (shape) 165.317 168.421 928.135
Distribution 0.002 (scale)
0.001 (location)
Weibull 0.100 (shape) 322.368 328.368 332.683
Inverse
.244 |
Exponential 0 (scale)
0.001 (location)
EGIED 0.00 1 (shape) 203.052 209.053 302.143

0.003 (scale)
0.046 (location)
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Table 3 : Fitted Probability Distributions for Failure Times Data 3

Fitted Parameter -2inL AIC BIC AICC

Model For  Estimate

Failure

Time

Weibull 4.635 (shape) 210.978  214.978 217.846 215.406
33.673 (Scale)

Exponential  0.033 (rate) 274.529  276.529 277.963  279.044

Three-

Parameter

Weibull 0.012 (shape)

Model 0.234 (Scale) 212.120  214.120 216.008  215.348
0.057 (Location)

Generalized 102.591

WEIBULL 0.065 (shape) 102.592 107.095  103.481

Distribution  0.002 (scale)
0.001 (location)

Weibull 1.000 (shape) 178.282 184.283 193.050

Inverse 242 (scale)

Exponential

Distribution  0.010 (location)
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Table 4: Fitted Probability Distributions for Failure Times Data 4

Fitted Model For Parameter -2inLL AIC BIC AICC
Failure Time Estimate
Weibull 1.265 (shape) 92.316 96.318 99.119  97.671
1.880 (Scale)
Exponential rate 0.565 94.270 96.270 99.119
Three-Parameter
Weibull Model 0.713(shape)
0.145 (Scale) 79.816 85.817 89.516
0.145 (Location)
Generalized
. h 81 A A
WEIBULL 0.065 (shape) 99.817 95.169 97.188
Distribution 0.002 (scale)
0.001 (location)
Weibull 1 240.074
c1bull Tverse 0.010 (shape) 246.074  377.890  388.900
Exponential
Distribution(WIE) 0.269 (scale)
00.001(location)

Discussion/Conclusion

Table 1 reveals the result of the parameter
estimate and goodness of fit for the failure time of
500mw power generating set (data set 1). Three-
Parameter Weibull and Generalized Weibull
distribution gave adequate fit to the data
compared with the Classical Weibull and
exponential distributions. The Generalized
Weibull distribution gave the best fit to the data
set.This implies that the Generalized Weibull
distribution is an improvement over the classical
Weibull for failure data set. The Weibull,
Exponential, Three-Parameter Weibull, and the
Generalized Weibull distributions were fitted to
the third failure time data (data set 2), the
parameter estimate and goodness of fit results are
presented in Table 2. The result in Table 2 revealed
that, the Three Parameter Weibull and the
exponentiated inverse exponential distributions
gave good fit to the data with the Generalized
Weibull distribution providing the best fit

amongst all distributions based on all the criteria.
Table 3 reveals the result of the parameter
estimate and goodness of fit for the data. The
Generalized Weibull distribution gave the best fit
to the dada. This implies that the Generalized
Weibull distribution is an improvement over the
classical Weibull for failure data set.

Table 4 shows the result of the goodness of fit of
the Weibull, Exponential, Three-Parameter
Weibull, the Generalized Weibull distributions
for the forth failure data.The result revealed that,
the Generalized Weibull Distribution (GWD) and
Three Parameter Weibull gave good fit to the data
with the Three Parameter Weibull providing the
best fit amongst all distributions based on all the
criteria. This implies that the Three parameters
Weibull distribution is an improvement over the
classical Weibull distribution for this failure data
set.
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